Eccentricity Dependent Neural Network with Recurrent Attention for Scale, Translation and Clutter Invariance
نویسندگان
چکیده
منابع مشابه
Neural Machine Translation with Recurrent Attention Modeling
Knowing which words have been attended to in previous time steps while generating a translation is a rich source of information for predicting what words will be attended to in the future. We improve upon the attention model of Bahdanau et al. (2014) by explicitly modeling the relationship between previous and subsequent attention levels for each word using one recurrent network per input word....
متن کاملEccentricity Dependent Deep Neural Networks: Modeling Invariance in Human Vision
Humans can recognize objects in a way that is invariant to scale, translation, and clutter. We use invariance theory as a conceptual basis, to computationally model this phenomenon. This theory discusses the role of eccentricity in human visual processing, and is a generalization of feedforward convolutional neural networks (CNNs). Our model explains some key psychophysical observations relatin...
متن کاملBidirectional Recurrent Neural Network with Attention Mechanism for Punctuation Restoration
Automatic speech recognition systems generally produce unpunctuated text which is difficult to read for humans and degrades the performance of many downstream machine processing tasks. This paper introduces a bidirectional recurrent neural network model with attention mechanism for punctuation restoration in unsegmented text. The model can utilize long contexts in both directions and direct att...
متن کاملRecurrent Neural Network Encoder with Attention for Community Question Answering
We apply a general recurrent neural network (RNN) encoder framework to community question answering (cQA) tasks. Our approach does not rely on any linguistic processing, and can be applied to different languages or domains. Further improvements are observed when we extend the RNN encoders with a neural attention mechanism that encourages reasoning over entire sequences. To deal with practical i...
متن کاملLattice-Based Recurrent Neural Network Encoders for Neural Machine Translation
Neural machine translation (NMT) heavily relies on word-level modelling to learn semantic representations of input sentences. However, for languages without natural word delimiters (e.g., Chinese) where input sentences have to be tokenized first, conventional NMT is confronted with two issues: 1) it is difficult to find an optimal tokenization granularity for source sentence modelling, and 2) e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Vision
سال: 2019
ISSN: 1534-7362
DOI: 10.1167/19.10.209